
59

 [LEARN TO CODE WITH SCRATCH]

59[High Fliers][High fliers]

[CHAPTER TWELVE]

ESSENTIALS

BUILD A
SPACE
SHOOTER

59[Build a Space Shooter]

How to create an impressive 3D space shooter,
using nothing more than Scratch and some
clever coding techniques…

60

ESSENTIALS

[Chapter One]60 [Chapter Twelve]

Right: {ress the
space bar to fire

the ship’s lasers to
destroy debrisſ if it

crashes into youØ
your shield Šgreen

barš Ƶill deplete

cratch is a great programming language for testing out a
range of concepts. As we’ve seen Scratch programs typically
involve controlling one or more sprites on the screen.

Computer games where the characters are controlled from a distant
view are third-person games. Games can be more exciting when the
human player looks through the eyes of the central character in the
game, however. This is normally referred to as a first-person game.

In this article, some of the principles of constructing a first-
person game are introduced. The player is the pilot of a spaceship
that is drifting through a debris field. The main engine has
gone oŀine, causing the spaceship to drift through the debris
at a constant speed. However, the spaceship still has working
thrusters on the top, bottom, left, and right of the craft. The main
laser system is also operational. The heroic pilot has to shoot
through or dodge the debris. A point is awarded each time a piece
of debris is destroyed with the ship’s lasers. If the debris crashes
into the spaceship, then its shield will be damaged. After the
shield has been completely broken, the spaceship will explode.

S

61

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

Perspective
In real life, objects that are far away appear to be smaller. One example
of this is a set of railway tracks. Looking down railway tracks and into
the distance, the tracks appear to become closer together. This can be
applied to a computer game, where objects need to be shown as being
in the distance. When an object becomes closer to a player, the object
should become larger on the screen.

In this game, a one-point perspective is used. This means that distant
objects appear to come from the centre of the screen. Rather than draw
a lot of very small images at the vanishing point, it’s more sensible to
assume a viewing plane. The viewing plane corresponds to the distance at
which objects become visible. The two diagrams – at the top of this page
and overleaf – show the position of the viewing plane, and the vanishing
point as it appears on the screen. In the illustration of the viewing plane,
the z-axis points from the centre of the screen straight towards the player
and is perpendicular to the x-y plane.

[Build a Space Shooter]

Viewing plane

Infinity

y-axis

x-axis

62

ESSENTIALS

[Chapter One]62

If the spaceship has no velocity along the x-y plane, and an object
appears at the viewing plane with a position that’s not in the centre of
the screen, then the object appears to have a velocity that’s proportional
to its distance from the centre of the screen. This isn’t a real velocity,
but is the effect of the perspective used to display the z-axis. This effect
can be observed when driving along a straight road: a vehicle that’s on
the other side of the road, but far in the distance, appears to move to the
other side of the road as it approaches.

Spaceship and star field
In the game, the spaceship isn’t able to turn. Since the stars in
the distance are very far away, they wouldn’t appear to move
relative to the spaceship. Therefore, a static star field was drawn
on the stage background.

[Chapter Twelve]

The view from the cockpit

Vanishing point

y-axis

x-axis

63

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

The spaceship cockpit and
heads-up display should stay
in the foreground. This was
achieved by creating a sprite that
is as big as the screen. When
the game starts, the �pace�hip
sprite is set to be above other
sprites (Listing 1). Therefore, the
cockpit edges are displayed as
being in the foreground.

The horizontal and
vertical velocity components
of the spaceship are stored in
the �� and �� variables. These
were created as global variables,
since the velocity components
affect the motion of other sprites
on the screen. The shield�eft
variable contains the number of
shield points left, and the score
contains the player’s score. The
shield�eft variable was created
as a global variable, since the
other sprites that may hit the
cockpit need to be able to change its value; score was also created
as a global variable, since other sprites need to be able to increment
it. The game continues until there are no shield points left. When
the game starts, all four global variables are reset to zero and the
spaceship is shown to be working as normal. If there are no shield
points left, then the ship is shown to be destroyed by changing the
costume of the �pace�hip sprite. The thrusters on the right, left,
bottom and top of the spaceship are controlled by the cursor keys.
Since the spaceship is in space, there’s no friction to slow down its
movement. Therefore, firing the thrusters in one direction will build
up the velocity in that direction. To make it easier for the player to
see the current status of the game, the values of the ��, �� and score
variables were selected to be displayed at the bottom of the screen.

[Build a Space Shooter]

.01

64

ESSENTIALS

[Chapter One]64

Shield heads-up display
The number of shield points
remaining is shown on the left-
hand side of the screen. This
image is a sprite called �hield,
which has several costumes that
correspond to the different shield
states. The different costumes
were a copy of the first costume,
each with one more green
box removed.

When the green flag is pressed,
the �hield sprite is set to be just
below the main cockpit but above
the other sprites (Listing 3). This
means that the shield display
stays in the foreground. The
script for the �hield sprite waits
until the number of shield points
decreases and then switches
to the appropriate costume.

Lasers
The lasers were drawn as another
sprite. The size of the �aser
sprite was carefully matched to
the �pace�hip sprite by copying
the �pace�hip costume, to check
where the lasers would appear on
the screen.

When the green flag is pressed,
the �aser sprite is set to appear
just below the �pace�hip sprite
(Listing 4, overleaf). So it’s in
the foreground, but not as close
as the cockpit. The lasers are
fired by pressing the space bar.
To make the game a bit harder,

.02

[Chapter Twelve]

65

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Build a Space Shooter]

the lasers fire for a second, then
recharge for a second. This means
that the player should not hold
down the space bar, but only fire
the lasers when needed. Similar
to the �pace�hip sprite script,
the �aser sprite only recognises
the space bar when the number of
shield points is greater than zero.

Space debris
Two types of space debris were
created: �a�a�all and �crap.
The script for the �a�a�all sprite
(Listing 5, overleaf) was copied
and modified slightly for the �crap
sprite (Listing 6) to prevent both
sprites appearing at exactly the
same time. The two sprites were
also given two costumes, to show
them as being nor�al or e�ploded.

When the green flag is pressed, the �a�a�all is placed below
the cockpit, shield display, and lasers, then it’s hidden from view.
The main loop continues while the game is being played. When the
�pace�hip sprite switches to the destro�ed costume, it finishes the
game by stopping all scripts. This includes the main loops of the space
debris sprites.

To show that it’s in the distance, the �a�a�all appears at the viewing
plane at 1(of its normal size. To make the game more interesting, its
starting position is chosen at random in the x-y plane. Due to the one-
point perspective used, objects that are closer to the edge of the screen
will quickly disappear from this location. Therefore, objects were chosen
to appear within a 100 by 100 box around the centre of the screen. The
initial position of the sprite, along the x- and y-axes, is stored in the
initialɏ� and initialɏ� variables. Since these variables are only
needed for this sprite, they were created as local variables for this sprite
only. The initial position components are rescaled to produce an apparent
velocity offset associated with the perspective. They are rounded to

.03

66

ESSENTIALS

[Chapter One]66

integers, since the sprite moves in numbers of pixels. The sprite is then
shown on the screen. Next, the script enters another loop that continues
until the sprite is full-size, has touched the edge of the screen, or has
been hit by the laser beams. The point where the two laser beams meet
was given a pink colour, so that this colour could be used to test if the
laser beams had hit the �a�a�all. The relative velocity of the debris
along the z-axis can be raised by increasing the change si�e b� ɬ (5%)
command, or by reducing the size of the wait within the motion loop.

In this game, the space debris is spinning but is otherwise stationary
with respect to the rest of the universe. The spaceship is drifting
through the debris field at a constant speed, and starts the game at rest
in the x-y plane. When the spaceship thrusters are fired, the spaceship
moves along the x-y plane with respect to the universe. However, the
game is played from the pilot’s point of view, rather than from the point
of view of the universe or the space debris. Therefore, when the player’s
spaceship is moving to the left, the �a�a�all is shown as moving to the
right. If the spaceship moves downwards, then the �a�a�all moves
upwards. This can be demonstrated by looking at a cup on a desk: if the
person looking at the cup moves to the left, then the cup moves to the
right with respect to the person’s line of sight. The motion of the sprite

.04

[Chapter Twelve]

67

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Build a Space Shooter]

.05

68

ESSENTIALS

[Chapter One]68

.06

[Chapter Twelve]

69

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Build a Space Shooter]

is therefore the sum of the relative velocity and the apparent velocity,
due to the object being created at a point on the viewing plane
that’s not in the centre of the screen.

If the �a�a�all has been hit by the laser beams, then the score is
incremented and the costume is switched to the e�ploded version.
The program waits for half a second for the player to view the
e�ploded sprite. If the �a�a�all hasn’t been hit by the lasers and it
hasn’t touched the edge of the screen, then it has hit the spaceship.
If the �a�a�all has hit the spaceship, then the number of shield
points is reduced by one and the �a�a�all costume is switched to
the e�ploded version. If the �a�a�all has missed the spaceship,
then it disappears behind the spaceship harmlessly. After these logic
conditions, the �a�a�all sprite is hidden and reappears somewhere
else on the screen.

Possible extensions
Other features could be added to the game. The spaceship could collect
shield tokens or be able to use a wider laser beam to destroy more than
one object at once. Alternatively, the principles demonstrated within
this program could be used to create a first-person car racing game.

